Abstract

The design and fabrication of highly active, robust and cost-efficient electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of great significance towards overall water splitting, but remains challenging as well. Herein, we report, for the first time, heterostructural Co/CeO2/Co2P/CoP@NC dodecahedrons as bifunctional electrocatalyst, in which abundant interfaces are formed between different components. Typical ZIF-67 (ZIF = zeolitic imidazolate framework) dodecahedrons with pre-inserted CeO2 nanowires were selected as precursors to synthesize Co/CeO2/Co2P/CoP@NC via a direct carbonization process followed by phosphidation, simultaneously generating the strong coupled heterojunction interfaces through interactions between CeO2 and CoxP species. Abundant porous structure leads to the exposure of more active sites and the carbon encapsulation of nanodomains sustains the high robustness and conductivity and the synergistic effect between the multi-components heterostructure. Benefiting from the above collective advantages, the Co/CeO2/Co2P/CoP@NC electrocatalysts exhibit small overpotentials of 307 and 195 mV to derive 10 mA cm−2 for OER and HER, respectively. Furthermore, an alkaline electrolyzer assembled by using Co/CeO2/Co2P/CoP@NC as both cathode and anode can achieve a current density of 10 mA cm−2 at a low voltage of 1.76 V and work continuously for over 15 h. This work would provide a rational protocol for fabrication multi-phase interface enriched electrocatalysts toward highly efficient energy conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.