Abstract

Information on how abiotic and biotic factors affect species population structures and regeneration are critical for understanding plant growth in natural habitats. Here, we used the data from three spatially distinct populations of Afzelia africana Sm. in the Pendjari Biosphere Reserve in Benin, to determine how the species population structures respond to abiotic and biotic factors. Afzelia africana population structures were studied using several parameters including basal area, tree height, density of successive diameter classes, and size class slope. We tested for individual effects of abiotic (mound density, soil type, and terrain slope) and biotic (heterospecific tree density) factors on the species population structure. We also tested for similarity of species composition among studied A. africana population stands. Results revealed a tree density structure with mature individuals, and size class distribution indicating a recruitment bottleneck at the juvenile stage (10–20 cm diameter), possibly due to mammal browsing, natural and artificial fires. Heterospecific tree density was positively associated with A. africana adult density but negatively related to the species growth parameters (mean diameter, basal area, and tree height). These results indicate some degrees of niche overlap between A. africana and coexisting species but also partly reflect A. africana tolerance and adaptation to limited resources environment. Soil type significantly influenced both basal area and regeneration density, greater values being observed on silt-sand-rocky soils. Basal area was higher on steeper slope, probably a result of species conservative strategies. These findings were discussed in line with management and restoration action needs in the Pendjari Biosphere Reserve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call