Abstract

A general framework for principal component analysis (PCA) in the presence of heteroskedastic noise is introduced. We propose an algorithm called HeteroPCA, which involves iteratively imputing the diagonal entries of the sample covariance matrix to remove estimation bias due to heteroskedasticity. This procedure is computationally efficient and provably optimal under the generalized spiked covariance model. A key technical step is a deterministic robust perturbation analysis on singular subspaces, which can be of independent interest. The effectiveness of the proposed algorithm is demonstrated in a suite of problems in high-dimensional statistics, including singular value decomposition (SVD) under heteroskedastic noise, Poisson PCA, and SVD for heteroskedastic and incomplete data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.