Abstract

Twenty-one hybrids of sunflower were produced by crossing 7 introduced cytoplasmic male sterile lines (CMS-lines) with 3 restorer lines (RF-lines) using line × tester mating design. The twenty-one hybrids, three restorers, seven maintainer lines (B-lines) were evaluated. The experiment was conducted in a randomized complete block design of three replications. Mean squares due to genotypes, parents (P), crosses (C), lines (L), testers (T), P vs. C, for stearic acid and line × tester for palmitic acid. The inbred lines and their F1 hybrids differed significantly in their mean values of the traits under study. The variances due to specific combining ability (SCA) were higher than general combining ability (GCA) variances for all the studied traits, showing non-additive type of gene action controlling the traits. Non-additive type of gene action can be utilized for varietal improvement through heterosis breeding. Heterosis values for seed yield plant−1 were positive and highly significant relative to both the parental mean (17.68–72.38%) and the better parent (−2.86–56.842%). Significantly and negative heterosis was recorded in the case of linoleic acid relative to the parental mean (−81.24 to −38.02%) and better parent (−66.24–22.87%). With oleic acid, the heterotic effect ranged from −14.18 to 39.59% (parental mean) and from −15.06 to 38.72% (better parent). Therefore, these results are valuable for the improvement of quantitative as well as qualitative traits in sunflower breeding material to fulfill the edible oil requirements.

Highlights

  • Sunflower (Helianthus annuus L.) is an important edible oilseed crop and ranks fourth in terms of its global edible oil production after palm, soybean and rapeseed

  • Sunflower oil with high oleic acid content is nutritionally similar to olive oil which is considered superior to other types of seed oil (Doty, 1978; Hamed et al, 2020)

  • Present results are in agreement with those of Hladni et al (2007) who reported that heterotic values for seed yield were significantly positive relative to parental average as well as better parents

Read more

Summary

Introduction

Sunflower (Helianthus annuus L.) is an important edible oilseed crop and ranks fourth in terms of its global edible oil production after palm, soybean and rapeseed. Sunflower seeds contain a high level of oil content (40–50%) (Naeem et al, 2019). 90% of the total fatty acids content is comprised of linoleic acid (C-18:2), oleic acids (C-18:1), and 8–10% of mainly palmitic acid (C-16:0) and stearic acid (C-18:0). According to Friedt et al (1994), in addition to conventional fatty acids, sunflower oil contains several other fatty acids, but is present only in traces (C14:0, C16:1, C14:1, C20:0, C22:0). Sunflower oil with high oleic acid content is nutritionally similar to olive oil which is considered superior to other types of seed oil (Doty, 1978; Hamed et al, 2020). The main breeding objective of sunflower is to develop high-yielding, diseaseresistant hybrids with high oil quality (Dudhe et al, 2009)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call