Abstract

Isoflavone, a group of secondary metabolites in soybean, is beneficial to human health. Improving isoflavone content in soybean seeds has become one of the most important breeding objectives. However, the narrow genetic base of soybean cultivars hampered crop improvement. Wild soybean is an extraordinarily important gene pool for soybean breeding. In order to select an optimal germplasm for breeding programs to increase isoflavone concentration, 36 F1 soybean progenies from different parental accessions (cultivars, wild, Semi-wild and Interspecific) with various total isoflavone (TIF) concentration (High, Middle, Low) were analyzed for their isoflavone content. Results showed that male parents, except for Cultivars, showed positive GCA effects. In particular, wild soybean had higher positive GCA effects for TIF concentration. Both MP and BP heterosis value declined in the hybrid in which male parents were wild soybean, semi-wild soybean, interspecific offspring and cultivar in turn. In general, combining ability and heterosis in hybrids which had relative higher TIF concentration level parents showed better performance than those which had lower TIF concentration level parents. These results indicated characteristics of isoflavone content were mainly governed by additive type of gene action, and wild relatives could be utilized for breeding of soybean cultivars with this trait. A promising combination was found as the best potential hybrid for isoflavone content improvement.

Highlights

  • Soybean, Glycine max (L.) Merr., is the world’s most important oilseed crop

  • Among the combinations that were crossed between male parents in a species group and the same female parent, the mean total isoflavone (TIF) concentration showed a decreasing trend in hybrids whose male parents were classified from high to low TIF (Fig. 1).The analysis of variance (ANOVA) revealed highly significant differences (P< 0.01) among genotypes for TIF concentration, The mean squares of parents and crosses were significantly different at a 1% level of probability

  • 36 F1 soybean progenies were analyzed for their isoflavone content using different species’parental lines which were divided into 3 levels each based on the isoflavone (TIF) concentration of their dry seed

Read more

Summary

Introduction

Glycine max (L.) Merr., is the world’s most important oilseed crop. Isoflavone belongs to a group of secondary metabolites which are an important class of compounds that mediate multiple plant-microbial interactions in soybean [1]. Because of benefits to food and human health, breeding soybean seeds with a desirable isoflavone content has become one of the most important breeding objective [17,18]. Sun et al(2002) found that there was heterosis in F1, F2 generations of most combinations among fifteen combinations with six soybean cultivars of different isoflavone contents. They predicted the selection might be carried out preliminarily in F2 hybrids [21]. We determined total isoflavone (TIF) concentration from 60 Chinese soybean accessions including 28 wild soybean (Glycine soja) and 32 cultivated soybean (Glycine max). Lai proposed that crossing between high isoflavone wild soybean and high isoflavone cultivated soybean would enhance a rapid progress in the breeding of high isoflavone soybeans [26]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.