Abstract
Heteroscedasticity testing is of importance in regression analysis. Existing local smoothing tests suffer severely from curse of dimensionality even when the number of covariates is moderate because of use of nonparametric estimation. A dimension reduction-based model adaptive test is proposed which behaves like a local smoothing test as if the number of covariates was equal to the number of their linear combinations in the mean regression function, in particular, equal to 1 when the mean function contains a single index. The test statistic is asymptotically normal under the null hypothesis such that critical values are easily determined. The finite sample performances of the test are examined by simulations and a real data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Computational Statistics & Data Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.