Abstract

Data censoring causes ordinary least-square estimators of linear models to be biased and inconsistent. The Tobit estimator yields consistent estimators in the presence of data censoring if the errors are normally distributed. However, nonnormality or heteroscedasticity results in the Tobit estimators being inconsistent. Various estimators have been proposed for circumventing the normality assumption. Some of these estimators include censored least absolute deviations (CLAD), symmetrically censored least-square (SCLS), and partially adaptive estimators. CLAD and SCLS will be consistent in the presence of heteroscedasticity; however, SCLS performs poorly in the presence of asymmetric errors. This article extends the partially adaptive estimation approach to accommodate possible heteroscedasticity as well as nonnormality. A simulation study is used to investigate the estimators’ relative performance in these settings. The partially adaptive censored regression estimators have little efficiency loss for censored normal errors and appear to outperform the Tobit and semiparametric estimators for nonnormal error distributions and be less sensitive to the presence of heteroscedasticity. An empirical example is considered, which supports these results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.