Abstract
Low-rank matrix approximation has applications in many fields, such as 2-D filter design and 3-D reconstruction from an image sequence. In this paper, one issue with low-rank matrix approximation is investigated: heteroscedastic noise. In most of previous research, the covariance matrix of the heteroscedastic noise is assumed to be positive definite. This requirement restricts the usefulness of results derived from such research. In this paper, we extend the Wiberg algorithm, which originally deals with the missing data problem with low-rank approximation, to the cases, where the heteroscedastic noise has a singular covariance matrix. Experiments show that the proposed Wiberg algorithm converges much faster than the bilinear approach, and consequently avoids many nonconvergent cases in the bilinear approach. Experiments also show that, to some extent, the Wiberg algorithm can tolerate outliers and is not sensitive to parameter variation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.