Abstract

The Diels-Alder cycloaddition of biomass-derived furans and subsequent dehydration are promising routes for the sustainable production of commodity chemicals such as p-xylene (PX). In this paper, we have investigated the catalytic performances of a range of phosphotungstic acid (HPW) and silicotungstic acid (HSiW) catalysts supported on various oxides, i.e., SiO2, Al2O3, TiO2 and ZrO2 and their structure-activity correlation in the conversion of 2,5-dimethylfuran (DMF) and ethylene to PX. The characterization studies of the catalysts using XRD, BET, Raman and 31P MAS-NMR spectroscopy reveal that all of the supported heteropolyacid (HPA) catalysts (except HPW/ZrO2) retain their Keggin structure on the surface of oxide supports. Results from ammonia- and n-propylamine-TPD studies show that all of the supported HPA catalysts possess well-defined Brønsted acid sites with the total acidity decreasing in the following order: HPA/SiO2>HPA/Al2O3>HPA/ZrO2>HPA/TiO2. The conversion of DMF and the initial rate of PX production generally increase with an increase in the total acidity, with HPA/SiO2 being the most active catalyst. The turnover frequency of PX production for HPA/SiO2 is also considerably greater than those for the HPAs supported on Al2O3, ZrO2, and TiO2, which suggests that the higher activity of HPA/SiO2 is at least partly due to the enhanced strength of Brønsted acid sites. Both the silica-supported HSiW and HPW catalysts demonstrate remarkably high PX selectivity (82–85%) at high DMF conversion (91–94%) at 250°C after 6h reaction. The effects of reaction conditions such as acid loading, reaction temperature, and reaction time have also been investigated with the most active silica-supported HSiW catalysts to optimize the PX yield.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.