Abstract

This study assesses factors that influence the rates of change of organelle gene diversity and the maintenance of heteroplasmy. Losses of organelle gene diversity within individuals via vegetative segregation during ontogeny are paramount to resultant spatial and temporal patterns. Steady-state losses of organelle variation from the zygote to the gametes are determined by the effective number of organelles, which will be approximately equal to the number of intracellular organelles if random segregation prevails. Both rapid increases in organelle number after zygote formation and reductions at germ lines will reduce variation within individuals. Terminal reductions in organelles must be to very low copy numbers (<5) for substantial losses in variation to occur rapidly. Nonrandom clonal expansion and vegetative segregation during gametogenesis may be effective in reducing genetic variation in gametes. If organelles are uniparentally inherited, the asymptotic expectations for effective numbers of gametes and spatial differentiation will be identical for homoplasmic and heteroplasmic conditions. The rate of attainment of asymptote for heteroplasmic organelles, however, is governed by the rate of loss of variation during ontogeny. With sex-biased dispersal, the effective number of gametes is maximized when the proportional contributions of the sex having the higher dispersal rate are low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.