Abstract

This review is mainly focused on nanostructured metal oxide-based efficient photocatalysts for photoelectrochemical (PEC) water splitting applications. Owing to their distinctive physical and chemical properties, metal-oxide nanostructures have attracted a wide research interest for solar power-stimulated water splitting applications. Hydrogen generation by solar energy-assisted water splitting is a clean and eco-friendly route that can solve the energy crisis and play a significant role in efforts to save the environment. In this review, synthesis strategies, control of morphology, band-gap properties, and photocatalytic application of solar water splitting using hierarchical hetero-nanostructured metal oxide-based photocatalysts, such as titanium dioxide (TiO2), zinc oxide (ZnO), and tungsten/wolfram trioxide (WO3), are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call