Abstract
To obtain enhanced physical and biological properties, various nanoparticles are typically assembled into hybrid nanoparticles through the binding of multiple homologous DNA strands to their complementary counterparts, commonly referred to as homomultivalent assembly. However, the poor binding affinity and limited controllability of homomultivalent disassembly restrict the assembly yield and dynamic functionality of the hybrid nanoparticles. To achieve a higher binding affinity and flexible assembly choice, we utilized the paired heteromultivalency DNA to construct hybrid nanoparticles and demonstrate their excellent assembly characteristics and dynamic applications. Specifically, through heteromultivalency, DNA-functionalized magnetic beads (MBs) and gold nanoparticles (AuNPs) were efficiently assembled. By utilizing ICP-MS, the assembly efficiency of AuNPs on MBs was directly monitored, enabling quantitative analysis and optimization of heteromultivalent binding events. As a result, the enhanced assembly yield is primarily attributed to the fact that heteromultivalency allows for the maximization of effective DNA probes on the surface of nanoparticles, eliminating steric hindrance interference. Subsequently, with external oligonucleotides as triggers, it was revealed that the disassembly mechanism of hybrid nanoparticles was initiated, which was based on an increased local concentration rather than toehold-mediated displacement of paired heteromultivalency DNA probes. Capitalizing on these features, an output platform was then established based on ICP-MS signals that several Boolean operations and analytical applications can be achieved by simply modifying the design sequences. The findings provide new insights into DNA biointerface interaction, with potential applications to complex logic operations and the construction of large DNA nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.