Abstract
AbstractAcquiring fundamental knowledge of properties of actinide‐based materials is a necessary step to create new possibilities for addressing the current challenges in the nuclear energy and nuclear waste sectors. In this report, we established a photophysics–electronics correlation for actinide‐containing metal‐organic frameworks (An‐MOFs) as a function of excitation wavelength, for the first time. A stepwise approach for dynamically modulating electronic properties was applied for the first time towards actinide‐based heterometallic MOFs through integration of photochromic linkers. Optical cycling, modeling of density of states near the Fermi edge, conductivity measurements, and photoisomerization kinetics were employed to shed light on the process of tailoring optoelectronic properties of An‐MOFs. Furthermore, the first photochromic MOF‐based field‐effect transistor, in which the field‐effect response could be changed through light exposure, was constructed. As a demonstration, the change in current upon light exposure was sufficient to operate a two‐LED fail‐safe indicator circuit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.