Abstract

In many cases in industrial biotechnology, substrate costs make up a major part of the overall production costs. One strategy to achieve more cost-efficient processes in general is to exploit cheaper sources of substrate. Small organic acids derived from fast pyrolysis of lignocellulosic biomass represent a significant proportion of microbially accessible carbon in bio-oil. However, using bio-oil for microbial cultivation is a highly challenging task due to its strong adverse effects on microbial growth as well as its complex composition. In this study, the suitability of bio-oil as a substrate for industrial biotechnology was investigated with special focus on organic acids. For this purpose, using the example of the genetically engineered, non-pathogenic bacterium Pseudomonas putida KT2440 producing mono-rhamnolipids, cultivation on small organic acids derived from fast pyrolysis of lignocellulosic biomass, as well as on bio-oil fractions, was investigated and evaluated. As biosurfactants, rhamnolipids represent a potential bulk product of industrial biotechnology where substitution of traditional carbon sources is of conceivable interest. Results suggest that maximum achievable productivities as well as substrate-to-biomass yields are in a comparable range for glucose, acetate, as well as the mixture of acetate, formate and propionate. Similar yields were obtained for a pretreated bio-oil fraction, which was used as reference real raw material, although with significantly lower titers. As such, the reported process constitutes a proof-of-principle for using bio-oil as a potential cost-effective alternative carbon source in a future bio-based economy.

Highlights

  • The establishment of alternative feedstocks as sources of carbon for industrial biotechnology is a key goal to achieve cost-efficient and economical bio-processes

  • This study describes the heterologous production of mono-rhamnolipids on small organic acids derived from fast pyrolysis of lignocellulosic biomass, as well as on biooil fractions by using a genetically engineered P. putida KT2440 strain

  • In summary, the results suggest that acetate represents a potentially suitable carbon source for rhamnolipid production

Read more

Summary

Introduction

The establishment of alternative feedstocks as sources of carbon for industrial biotechnology is a key goal to achieve cost-efficient and economical bio-processes. A general competition between food and biotechnology has placed lignocellulosic biomass and other related carbon sources into the focus of attention as renewable and sustainable raw materials. As such, these substrates hold a significant economic and ecologic potential for industrial biotechnology. The investigated system provides a proof-of-principle for using bio-oil as a potential cost-effective alternative carbon source using rhamnolipid biosurfactants as an example for a value-added product (Fig. 1)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call