Abstract

In the present study, we attempted to improve the production of recombinant horseradish peroxidase C1a (HRP-C1a; a heme-binding protein) by Cryptococcus sp. S-2. Both native and codon-optimized HRP-C1a genes were expressed under the control of a high-level expression promoter. When the HRP-C1a gene with native codons was expressed, poly(A) tails tended to be added within the coding region, producing truncated messenger RNAs (mRNAs) that lacked the 3' ends. Codon optimization prevented polyadenylation within the coding region and increased both the mRNA and protein levels of active HRP-C1a. To improve secretion of the recombinant protein, we tested five types of N-terminal signal peptide (NTP). These included the native HRP-C1a NTP (C1a-NTP), short and long xylanase secretion signals (X1-NTP and X2-NTP), cutinase signal (C-NTP), and amylase signal (A-NTP), with and without a C-terminal propeptide (CTP). X2-NTP without CTP resulted in the highest HRP-C1a secretion into the culture medium. HRP-C1a secretion was further increased by using xylose fed-batch fermentation. The production of HRP-C1a in this study was 2.7 and 15 times higher than the production reported in previous studies that used insect cell and Pichia expression systems, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.