Abstract
Towards establishing a prospective industrial microbial lignan production process, we set up and investigated the biotransformation of coniferyl alcohol to secoisolariciresinol with recombinant Escherichia coli in a stirred-tank reactor (STR). Initially, we tested different cofactor concentrations and antifoam additions in shake flasks. Next, we designed an STR batch bioprocess and tested aeration rates, pH regulation, and substrate-feeding strategies. Targeted metabolomics of phenylpropanoids and lignans assisted the bioprocess development by monitoring the lignan pathway activity. We found that the copper concentration and the substrate-feeding strategy had considerable impact on lignan production. Furthermore, time-resolved monitoring of pathway metabolites revealed two maximal intracellular lignan concentrations, the first shortly after induction of gene expression and the second after the cells entered the stationary growth phase. During STR cultivation, a maximal intracellular titer of 130.4 mg L−1 secoisolariciresinol was achieved, corresponding to a yield coefficient of 26.4 mg g−1 and a space–time yield of 2.6 mg L−1 h−1. We report for the first time the in-depth evaluation of microbially produced lignans in a well-controlled STR bioprocess. Monitoring of the lignan pathway activity showed that lignan accumulation is highly dynamic during the cultivation and points towards the need for a more efficient coniferyl alcohol dimerization system for optimal microbial production conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.