Abstract

Virus-induced gene silencing (VIGS) is an effective tool for studying the functions of plant genes, but only a few VIGS vectors available for woody plants were reported so far. Here we present an effective heterologous VIGS system in woody plants based on tobacco rattle virus (TRV) vectors. We first tested whether the TRV-vector can be directly applied to infect woody plant species, such as Vernicia fordii, Populus tomentosa Carr. and Camellia oleifera. The results revealed that TRV-mediated VIGS could be effectively elicited in V. fordii, weakly in P. tomentosa Carr., but not in C. oleifera. TRV-based VIGS vectors with heterologous phytoene desaturase (PDS) sequences from various woody plant species silenced successfully the endogenous PDS gene in Nicotina benthamiana and V. fordii. The photobleached leaf phenotype of silenced plants significantly correlated with the down-regulation of endogenous PDS as compared with controls. To further confirm the reliability of VIGS in V. fordii, we also isolated the cloroplastos alterados 1 gene from P. tomentosa Carr., and the silencing pheotypes of albino leaves were observed in V. fordii 2 weeks after inoculation using a heterologous TRV-based VIGS system. Taken together, we have successfully developed an Agrobacterium-mediated VIGS assay in V. fordii and demonstrated that V. fordii as a heterologous VIGS system provides a valuable tool for functional genomic analysis in woody plant species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.