Abstract

Fatty acid desaturases are enzymes that introduce double bonds into fatty acyl chains, among which stearoyl-acyl carrier protein desaturase (S-ACP-DES) was widely distributed in the plant kingdom. We cloned the cDNA coding for fab2/ssi2, an S-ACP-DES from Arabidopsis thaliana, into the vector pET30a and heterologously expressed this fatty acid desaturase in Escherichia coli BL21 (DE3). After being induced with IPTG, the fusion protein was efficiently expressed in a soluble form. The SSI2 desaturase was purified by nickel ion affinity chromatography and the product obtained showed a single band by SDS–PAGE analysis. The expression of ssi2 modified the fatty acid composition of the recombinant strain. The ratio of palmitic acid (16:0) decreased from 45.2% (the control strain) to 35.2% while palmitoleate (16:1Δ9) and cis-vaccenate (18:1Δ11) levels were enhanced to some extent. The desaturase enzymatic activity was measured in vivo when the enzyme substrate stearic acid was provided in the culture medium. A new fatty acid, oleic acid (18:1Δ9) was found in the recombinant strain which did not exist in wild-type E. coli. These results demonstrated that the cofactors of the host system can complement the requirement of the SSI2 desaturase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.