Abstract

BackgroundCellobiose dehydrogenase from Phanerochaete chrysosporium (PcCDH) is a key enzyme in lignocellulose depolymerization, biosensors and biofuel cells. For these applications, it should retain important molecular and catalytic properties when recombinantly expressed. While homologous expression is time-consuming and the prokaryote Escherichia coli is not suitable for expression of the two-domain flavocytochrome, the yeast Pichia pastoris is hyperglycosylating the enzyme. Fungal expression hosts like Aspergillus niger and Trichoderma reesei were successfully used to express CDH from the ascomycete Corynascus thermophilus. This study describes the expression of basidiomycetes PcCDH in T. reesei (PcCDHTr) and the detailed comparison of its molecular, catalytic and electrochemical properties in comparison with PcCDH expressed by P. chrysosporium and P. pastoris (PcCDHPp).ResultsPcCDHTr was recombinantly produced with a yield of 600 U L−1 after 4 days, which is fast compared to the secretion of the enzyme by P. chrysosporium. PcCDHTr and PcCDH were purified to homogeneity by two chromatographic steps. Both enzymes were comparatively characterized in terms of molecular and catalytic properties. The pH optima for electron acceptors are identical for PcCDHTr and PcCDH. The determined FAD cofactor occupancy of 70% for PcCDHTr is higher than for other recombinantly produced CDHs and its catalytic constants are in good accordance with those of PcCDH. Mass spectrometry showed high mannose-type N-glycans on PcCDH, but only single N-acetyl-d-glucosamine additions at the six potential N-glycosylation sites of PcCDHTr, which indicates the presence of an endo-N-acetyl-β-d-glucosaminidase in the supernatant.ConclusionsHeterologous production of PcCDHTr is faster and the yield higher than secretion by P. chrysosporium. It also does not need a cellulose-based medium that impedes efficient production and purification of CDH by binding to the polysaccharide. The obtained high uniformity of PcCDHTr glycoforms will be very useful to investigate electron transfer characteristics in biosensors and biofuel cells, which are depending on the spatial restrictions inflicted by high-mannose N-glycan trees. The determined catalytic and electrochemical properties of PcCDHTr are very similar to those of PcCDH and the FAD cofactor occupancy is good, which advocates T. reesei as expression host for engineered PcCDH for biosensors and biofuel cells.

Highlights

  • Cellobiose dehydrogenase from Phanerochaete chrysosporium (PcCDH) is a key enzyme in lignocellulose depolymerization, biosensors and biofuel cells

  • The rising of lytic polysaccharide monooxygenase (LPMO) as a major polysaccharide depolymerizing enzyme in fungal secretomes with a high applicability in biomass conversion has raised the interest into its electron donor cellobiose dehydrogenase (CDH, EC1.1.99.18, CAZy: AA3.1) [4]

  • The obtained values range from 203 mV vs. SHE at pH 3.2 to 146 mV vs. SHE at pH 5.3 (Fig. 5). This is in accordance with the redox potential published by Igarashi et al for PcCDH in the yeast Pichia pastoris (PcCDHPp). These results demonstrate that PcCDH in T. reesei (PcCDHTr) has the same redox properties and can replace PcCDHPp in biosensor and biofuel cell applications

Read more

Summary

Introduction

Cellobiose dehydrogenase from Phanerochaete chrysosporium (PcCDH) is a key enzyme in lignocellulose depolymerization, biosensors and biofuel cells. For these applications, it should retain important molecular and catalytic properties when recombinantly expressed. PcCDHTr and PcCDH were purified to homogeneity by two chromatographic steps Both enzymes were comparatively characterized in terms of molecular and catalytic properties. The determined FAD cofactor occupancy of 70% for PcCDHTr is higher than for other recombinantly produced CDHs and its catalytic constants are in good accordance with those of PcCDH. The rising of lytic polysaccharide monooxygenase (LPMO) as a major polysaccharide depolymerizing enzyme in fungal secretomes with a high applicability in biomass conversion has raised the interest into its electron donor cellobiose dehydrogenase (CDH, EC1.1.99.18, CAZy: AA3.1) [4]. CDH’s auxiliary function as an electron donor and a possible supplier of hydrogen peroxide to LPMO has been suggested by recent publications [11, 12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call