Abstract

Lactobacillus plantarum is involved in a multitude of food related industrial fermentation processes including the malolactic fermentation (MLF) of wine. This work is the first report on a recombinant L. plantarum strain successfully conducting MLF. The malolactic enzyme (MLE) from Oenococcus oeni was cloned into the lactobacillal expression vector pSIP409 which is based on the sakacin P operon of Lactobacillus sakei and expressed in the host strain L. plantarum WCFS1. Both recombinant and wild-type L. plantarum strains were tested for MLF using a buffered malic acid solution in absence of glucose. Under the conditions with L-malic acid as the only energy source and in presence of Mn2+ and NAD+, the recombinant L. plantarum and the wild-type strain converted 85% (2.5 g/l) and 51% (1.5 g/l), respectively, of L-malic acid in 3.5 days. Furthermore, the recombinant L. plantarum cells converted in a modified wine 15% (0.4 g/l) of initial L-malic acid concentration in 2 days. In conclusion, recombinant L. plantarum cells expressing MLE accelerate the malolactic fermentation.

Highlights

  • Lactic acid bacteria (LAB) contribute to taste and texture of a wide range of fermented products and inhibit the growth of spoilage bacteria (Mozzi et al 2010)

  • We demonstrated the use of this expression system to clone and express the mle gene from O. oeni into L. plantarum and utilize the recombinant L. plantarum for malolactic fermentation

  • Bacterial strains and growth conditions The organisms used in this study, O. oeni DSM 20252 and DSM 20255, purchased from the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany), E. coli OneShot TOP10 cells were from Invitrogen (Carlsbad, CA, USA)

Read more

Summary

Introduction

Lactic acid bacteria (LAB) contribute to taste and texture of a wide range of fermented products and inhibit the growth of spoilage bacteria (Mozzi et al 2010). This includes the application of LAB in winemaking to increase the stability of wines that undergo barrel or bottle-ageing. This process, the malolactic fermentation (MLF), normally occurs after the alcoholic fermentation (AF). Due to its high tolerance to low pH and higher amounts of SO2 and ethanol, Oenococcos oeni is the primary species encountered during spontaneous MLF (Capozzi et al 2010). O. oeni is the preferred organism for malolactic starter cultures, since the

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.