Abstract

Betaine aldehyde dehydrogenase (BADH) catalyzes the synthesis of glycine betaine, a regulator of osmosis, and therefore BADH is considered to play a significant role in response of plants to abiotic stresses. Here, based on the conserved residues of the deduced amino acid sequences of the homologous BADH genes, we cloned the AnBADH gene from the xerophytic leguminous plant Ammopiptanthus nanus by using reverse transcription PCR and rapid amplification of cDNA ends. The full-length cDNA is 1868bp long without intron, and contains an open reading frame of 1512bp, and 3′- and 5′-untranslated regions of 294 and 62bp. It encodes a 54.71kDa protein of 503 amino acids. The deduced amino acid sequence shares high homology, conserved amino acid residues and sequence motifs crucial for the function with the BADHs in other leguminous species. The sequence of the open reading frame was used to construct a prokaryotic expression vector pET32a-AnBADH, and transform Escherichia coli. The transformants expressed the heterologous AnBADH gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of salt and heat tolerance under the stress conditions of 700mmolL−1 NaCl and 55°C high temperature. This result suggests that the AnBADH gene might play a crucial role in adaption of A. nanus to the abiotic stresses, and have the potential to be applied to transgenic operations of commercially important crops for improvement of abiotic tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call