Abstract

Tyrosinase is a copper-containing polyphenol oxidase widely applied in the food, cosmetics, pharmaceutical, and other industries. Currently, the production of commercial tyrosinase primarily relies on extraction from fungi, which has high costs, low purity, low specific activity, and poor stability. The objective of this study is to obtain highly expressed bacterial tyrosinase with potential for industrial applications. The bacterial tyrosinases from five different sources were heterologously expressed in Escherichia coli BL21(DE3), and the tyrosinases TyrBm and TyrVs derived from Bacillus megaterium and Verrucomicrobium spinosum were obtained with the enzyme activities of (16.1±0.2) U/mL and (48.6±0.9) U/mL, respectively. After protein purification, we compared the enzymatic properties of TyrBm and TyrVs, which revealed that TyrVs exhibited better thermal stability and higher substrate specificity than TyrBm. On the basis of characterizing TyrVs with high catalytic performance, we established a biological hair dyeing system based on TyrVs catalysis to achieve in-situ catalytic hair dyeing. The color washing fastness test measured the ∆E value less than 7.38±0.64 after simulated 14-day cleaning. To facilitate the rapid separation of catalytic products and enzymes, we successfully constructed an immobilized enzyme TyrVs-CipA dependent on self-assembly label CipA and applied this enzyme in the DOPA modification of hydrolyzed silk fibroin (HSF). The immobilized enzyme continuously catalyzed HSF for more than seven cycles, resulting in a single DOPA modification degree exceeding 70.00%. Further investigations demonstrated that DOPA modification enhances the scavenging activity of HSF towards DPPH and O2- radicals by 507.80% and 78.23%, respectively. This study provides a technical foundation for the development of environmentally friendly biological hair dye based on tyrosinase and biomaterials for tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.