Abstract

The sucrose non-fermenting-1 related protein kinase 2 (SnRK2) family plays an important role in the response to abiotic stress. To characterize the function of the SnRK2 gene from Agropyron cristatum in stress protection, we cloned the complete coding sequence of the AcSnRK2.11 gene from A. cristatum and generated AcSnRK2.11-overexpressing tobacco lines. The open reading frame of AcSnRK2.11 was 1083bp in length and encoded a polypeptide of 360 amino acid residues. The sequence analysis results showed that AcSnRK2.11 contained conserved domains typified in SnRK2 protein kinases. Subcellular localization analysis showed that AcSnRK2.11 was located in the nucleus. AcSnRK2.11 was constitutively expressed in all of the examined tissues, and its transcription was induced by cold, dehydration, and salt stress, but not by abscisic acid treatment. Overexpression of the AcSnRK2.11 gene conferred freezing tolerance in yeast. AcSnRK2.11-overexpressing tobacco lines showed higher tolerance to freezing stress than did wild-type (WT) based on higher survival rates, lower malondialdehyde content and increased relative water content retention, chlorophyll yields, superoxide dismutase activities, reactive oxygen species content, peroxidase levels, and soluble carbohydrates under low-temperature conditions. The transcripts of NtDREB1, NtDREB2, NtERD10A, NtERD10B, NtERD10C, NtERD10D, NtMnSOD, NtCDPK15, and NtMPK9 in AcSnRK2.11-overexpressing tobacco lines were more abundant than in WT plants under low-temperature stress. These results suggest that AcSnRK2.11 may function as a regulatory factor associated with a cold-response pathway and could be used in plant breeding for cold resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call