Abstract
Natural resistance-associated macrophage protein 2 (Nramp2) has been suggested to be involved in transferrin-independent iron uptake. Two isoforms of the Nramp2 gene generated by alternative splicing of the 3ʹ exons were identified in mouse, rat and human, but it is unclear if they perform distinct functions. To rationalize our previous work, which indicated an increase in iron deposition in a Parkinsonian monkey brain, two monkey Nramp2 isoforms were isolated for a comparative study to assess their relative iron-uptake abilities, tissue distribution and subcellular localization. The monkey Nramp2 isoforms, 2a and 2b, exhibit approx. 98% identity at the amino acid level when compared with the human homologues. The Nramp2a transcript contains a canonical iron-responsive element (IRE), whereas that of Nramp2b lacks the IRE motif in the 3ʹ untranslated region. By reverse transcriptase (RT)-PCR, the mRNAs of both isoforms were detected in all tissues examined. The amino acid differences at the C-terminus neither affected the protein expression levels in HEK-293T and COS-7 cells nor altered the subcellular localization and tissue distribution of the isoforms. Similar levels of iron uptake were detected in the HEK-293T cells transfected with either the Nramp2a or 2b gene, and a reduction of iron from the ferric (Fe3+) to the ferrous (Fe2+) state is necessary before transport can take place. However, this transferrin-independent uptake of iron into the cells is not a Ca2+-dependent process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.