Abstract

Lytic polysaccharide monooxygenases could enhance the enzymatic conversion of recalcitrant polysaccharides by glycoside hydrolases. This study reports the expression and identification of a novel AA10 LPMO from Natrialbaceae archaeon, named NaLPMO10A, as a C1 oxidizer of chitin. The optimal temperature and pH for NaLPMO10A activity were 40 °C and 9.0, respectively, and NaLPMO10A exhibited high thermostability and pH stability under alkaline conditions. NaLPMO10A was also highly tolerant and stable when treated with high concentration of metal ions (1 M). Moreover, metal ions (Na+, K+, Ca2+ and Mg2+) significantly promoted NaLPMO10A activity and improved the saccharification efficiency of chitin by 22.6%, 45.9%, 36.7% and 53.9%, respectively, compared to commercial chitinase alone. Together, the findings of this study fill a gap in archaeal LPMO research, and for the first time demonstrate that archaeal NaLPMO10A could be a promising enzyme for improving saccharification under extreme condition, with potential applications in biorefineries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call