Abstract
Two new laccase genes, named lac1 and lac2, were cloned from the edible basidiomycete Coprinus comatus. Comparison of the deduced amino acid sequences revealed two laccases showed 66.12% identity and clustered with lac2 and lac3 from Coprinopsis cinerea in same phylogenetic group. Lac1 and lac2 encode proteins of 517 and 523 amino acids preceded by 18 and 21-residue signal peptides, respectively. Lac1 was functionally expressed in Pichia pastoris. The optimum pHs of recombinant Lac1 were 3.0, 6.0, 5.5 and 6.0 and the optimum temperatures were 65, 55, 70 and 50°C for ABTS, guaiacol, 2,6-dimethylphenol and syringaldazine, respectively. The Km values of Lac1 were 34, 4,317, 7,611 and 14μM, and the corresponding kcat values were 465.79, 7.67, 1.15 and 0.60 (s(-1)mM), for ABTS, guaiacol, 2,6-dimethylphenol and syringaldazine, respectively. The enzyme activity was completely inhibited by sodium azide (NaN(3)) and 1,4-dithiothreitol (DTT) at the concentration of 5mM. Laccase activity was also inhibited by several metal ions, especially Fe(2+), while K(+) and NH(4) (+) slightly enhanced laccase activity. Twelve synthetic dyes belonging to anthraquinone, azo and triphenylmethane dyes were decolorized by the recombinant Lac1 at different extents. The recombinant Lac1 decolorized azo dye Reactive Dark Blue KR up to 90% without any mediator and increasing to 96% with mediator, indicating its potential in the treatment of industrial effluent containing some recalcitrant synthetic dyes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Molecular Biology Reports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.