Abstract

Plant-targeted pCB302 plasmids containing sequences encoding gfp fusions with a microtubule-binding domain; gfp with the fimbrin actin-binding domain 2; and gfp with AtRACK1C from Arabidopsis thaliana, all harbored in Agrobacterium tumefaciens, were used to assay heterologous expression on three different clades of the photosynthetic dinoflagellate, Symbiodinium. Accessibility to the resistant cell wall and through the plasma membrane of these dinoflagellates was gained after brief but vigorous shaking in the presence of glass beads and polyethylene glycol. A resistance gene to the herbicide Basta allowed appropriate selection of the cells expressing the hybrid proteins, which showed a characteristic green fluorescence, although they appeared to lose their photosynthetic pigments and did not further divide. Cell GFP expression frequency measured as green fluorescence emission yielded 839 per every 106 cells for Symbiodinium kawagutii, followed by 640 and 460 per every 106 cells for Symbiodinium microadriaticum and Symbiodinium sp. Mf11, respectively. Genomic PCR with specific primers amplified the AtRACK1C and gfp sequences after selection in all clades, thus revealing their presence in the cells. RT-PCR from RNA of S. kawagutii co-incubated with A. tumefaciens harboring each of the three vectors with their respective constructs, amplified products corresponding to the heterologous gfp sequence while no products were obtained from three distinct negative controls. The reported procedure shows that mild abrasion followed by co-incubation with A. tumefaciens harboring heterologous plasmids with CaMV35S and nos promoters can lead to expression of the encoded proteins into the Symbiodinium cells in culture. Despite the obvious drawbacks of the procedure, this is an important first step towards a stable transformation of Symbiodinium.

Highlights

  • Photosynthetic dinoflagellates of the genus Symbiodinium live in symbiosis within a wide phyletic range of marine invertebrate hosts including cnidarians, mollusks, porifera and platyhelminthes

  • Glufosinate inhibits the activity of the enzyme glutamine synthetase (GS) resulting in a rapid accumulation of ammonium, inhibition of photosynthesis and cell death [38], whereas expression of the bar gene, results in the rapid conversion of glufosinate to the non-phytotoxic metabolite N-acetyl- L-glufosinate and confers resistance to the herbicide in cells expressing the enzyme

  • This was probably true for the photosynthetic Symbiodinium cells since incubation of different clades of wild type Symbiodinum cells in the presence of this type of herbicide promoted cell death and, on the contrary, Symbiodinium cells that carried the bar resistance gene were able to survive after incubation in selection medium with Basta [17]

Read more

Summary

Introduction

Photosynthetic dinoflagellates of the genus Symbiodinium live in symbiosis within a wide phyletic range of marine invertebrate hosts including cnidarians, mollusks, porifera and platyhelminthes. Molecular biology techniques have only been applied recently and to a limited extent [8,9,10,11,12,13,14,15], but no significant functional genomics research has been carried out. This is greatly due to the fact that only one report of stable transformation of the dinoflagellates Symbiodinium and Amphidinium in culture exists since 1998 [16]; and more recently, our own effort reporting the transient transformation of three Symbiodinium clades [17]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.