Abstract

Co-culture engineering is an emerging approach for microbial biosynthesis of a variety of biochemicals. In this study, E. coli-E. coli co-cultures were developed for heterologous biosynthesis of the natural product naringenin. The co-cultures were composed of two independent E. coli strains dedicated to functional expression of different portions of the biosynthetic pathway, respectively. The co-culture biosynthesis was optimized by investigating the effect of carbon source, E. coli strain selection, timing of IPTG induction and the inoculation ratio between the co-culture strains. Compared with the mono-culture strategy, the utilization of the designed co-cultures significantly improved the naringenin production, largely due to the reduction of metabolic stress, employment of proper hosts for improving pathway enzyme activities, and flexible adjustment of the relative biosynthetic strength between the co-culture strains. The findings of this study extend the applicability of co-culture engineering in complex natural product biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.