Abstract
Six heteroleptic dipyrrinato complexes [Ni(fcdpm)(dedtc)] (1), [Ni(fcdpm)(dipdtc)] (2), [Ni(fcdpm)(dbdtc)] (3), [Pd(fcdpm)(dedtc)] (4), [Pd(fcdpm)(dipdtc)] (5), and [Pd(fcdpm)(dbdtc)] (6) (fcdpm = 5-ferrocenyldipyrromethene; dedtc = diethyldithiocarbamate; dipdtc = diisopropyldithiocarbamate; dbdtc = dibutyldithiocarbamate) have been synthesized and characterized by elemental analyses and spectral (ESI-MS, IR, (1)H, (13)C NMR, UV-vis) and electrochemical studies. Crystal structures of 1, 2, 4, and 5 have been authenticated by X-ray single-crystal analyses. Nickel-based complexes 1-3 display selective chromogenic and redox sensing for Hg(2+) and Pb(2+) ions, while palladium complexes 4-6 display selective chromogenic and redox sensing only for Hg(2+). Electronic absorption, ESI-MS, and electrochemical studies indicated that sensing arises from interaction between 1-3 and Hg(2+)/Pb(2+) through sulfur of the coordinated dithiocarbamates, while it arises from the pyrrolic nitrogen of fcdpm and dithiocarbamate sulfur from 4-6 and Hg(2+). Different modes of binding between Ni and Pd complexes have further been supported by theoretical studies. The receptor-cation binding constants (K(a)) and stoichiometry between probes and Hg(2+)/Pb(2+) have been estimated by the Benesi-Hildebrand method and Job's plot analysis. Detection limits for 1-3 toward Hg(2+)/Pb(2+) and 4-6 for Hg(2+) have been found to be reasonably high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.