Abstract

We report the controlled formation and characterization of heterojunctions between carbon nanotubes and different metal nanocrystals (Fe, Co, Ni, and FeCo). The heterojunctions are formed from metal-filled multiwall carbon nanotubes (MWNTs) via intense electron beam irradiation at temperatures in the range of 450-700 degrees C and observed in situ in a transmission electron microscope. Under irradiation, the segregation of metal and carbon atoms occurs, leading to the formation of heterojunctions between metal and graphite. Metallic conductivity of the metal-nanotube junctions was found by using in situ transport measurements in an electron microscope. Density functional calculations show that these structures are mechanically strong, the bonding at the interface is covalent, and the electronic states at and around the Fermi level are delocalized across the entire system. These properties are essential for the application of such heterojunctions as contacts in electronic devices and vital for the fabrication of robust nanotube-metal composite materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.