Abstract

Design parameters for the heterojunction-based strained layer superlattice (SLS) long-wave infrared (LWIR) detector are investigated so that it operates at a lower bias voltage with lower dark current and higher photo response. At typical operating temperatures (T∼77K), the dark current of GaSb/InAs SLS LWIR detectors is dominated by the Shockley–Read–Hall (SRH) generation–recombination (g–r) process in the space-charge (depletion) region. In order to suppress this dark current, a wide bandgap region next to the absorber layer has been included in recent SLS designs. A series of heterojunction-based LWIR SLS detectors with various doping and barrier profiles have been designed and characterized. The significance of the doping profile and thickness of the wide-bandgap layer in optimization of the heterojunction-based SLS detector performance are exhibited from the modeling and experimental results of these devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.