Abstract

Mitochondria-targeted phototherapy, especially combined photothermal therapy (PTT) and photodynamic therapy (PDT), has been regarded as an attractive strategy for the treatment of tumor. In this study, a facile approach to prepare two-dimensional (2D) BiOCl-Bi2S3 nanostructures was developed, where Bi2S3 quantum dots were doped in/on the ultrathin BiOCl nanosheets, forming a p-n heterojunction. The BiOCl-Bi2S3 shows favorable photothermal conversion efficiency (32%) and synergistically reactive oxygen species (ROS) generating capability under near-infrared (NIR) irradiation. Moreover, the conjugation of synthetic targeting ligand to the surface of BiOCl-Bi2S3 endows the heterojunction effective tumor targeting ability and selective mitochondrial accumulation. The combined cancer targeting ability and synergistic PTT/PDT permit enhanced cooperative phototherapeutic efficiency of the 2D heterojunction. This study provides an attractive way for designing new class of heterostructure materials for potential applications in subcellular-targeted phototherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call