Abstract

Heterojunction photocatalysts SnO 2/SrNb 2O 6 were synthesized by a milling–annealing technique. The powders were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) method, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and UV–vis diffuse reflection spectroscopy (DRS). Their UV-induced photocatalytic activities were evaluated by the degradation of methyl orange and methylene blue. The results generally show that the binary semiconductors SnO 2/SrNb 2O 6, with matching band potentials, exhibit better photocatalytic properties than the single phase SrNb 2O 6 or SnO 2. The effective electron–hole separation both at the chemically bonded interface and in the two semiconductors is believed to be mainly responsible for the increased photocatalytic performance of composites. The formation of chemically bonded interfaces between SnO 2 and SrNb 2O 6 particles makes the interparticle charge transfer more spatially available and smoother, which is significant to enhance the photocatalytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.