Abstract

The effective removal of the low-concentration formaldehyde (HCHO) in the indoor environment is a critical issue affecting the quality of people’s daily lives. In this study, heterojunction catalysts composed of manganese dioxide (MnO2) and cesium tin iodine (CsSnI3) nanocrystals were first synthesized and successfully used for photocatalytic HCHO degradation. After the full band light irradiation (150 mW/cm2) for 3 h, the concentration of HCHO decreased from 7 ppm to a minimum of 0.03 ppm at room temperature (25 °C, 25 % RH, degradation efficiency reaches up to 99.6 %). Subsequent analysis using electron paramagnetic resonance (EPR) and transmission electron microscopy (TEM) revealed that the MnO2-CsSnI3 heterojunction photocatalyst not only offers a Z-scheme charge-transfer pathway but also promotes the generation of a large number of •O2− and •OH. Compared to the single-phase material, the concentration of •O2− and •OH has increased by 1.5 times. This MnO2-based Z-scheme heterojunction photocatalyst provides a novel strategy for the degradation of low-concentration HCHO in practical indoor environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.