Abstract

Enzymes are still indispensable for bio-assaying methods in biomolecule detection by far. The unsatisfied long-term instability, high cost, and susceptibility to the physical environment of natural enzymes are obvious weak points. Here, we developed peroxidase-like heterostructured nanozyme, vertically arraying molybdenum disulfide nanosheets on a substrate layer of nitrogen-doped reduced graphene oxide (MoS2/N-rGO), with a well-pleasing stability that is characterized by the retained enzymatic activity and maintained structure after 2 years of casual storage at ambient temperatures or 80 cycles of catalytic reaction. The catalytic kinetics of the as-prepared heterostructured nanozyme was superior to some reported nanozymes and even horse radish peroxidase, which was demonstrated due to the defect-rich MoS2 with Mo and S vacancies and nitrogen-doped rGO experimentally and theoretically. The vertically heterostructured nanozyme exhibited adequate analytical performance in sensitive and quantitative detection of glucose and glutathione (GSH), with a large dynamic sensing range and extremely low limit of detection (0.02 and 0.12 μM (3σ/slope) for glucose and GSH, respectively). We hope this inspired artificial nanozyme will contribute to the future development in sensitive detection of other biomolecules in physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.