Abstract
The MoO3/pentacene heterojunction is demonstrated to be effective for reducing the contact resistance in staggered organic thin-film transistors. The heterojunction-induced doping is nondestructive and may form a top conducting channel close to the pentacene surface. Contact interface doping and channel doping both significantly reduced the contact resistance. The effect of channel doping was prominent at low gate bias values, which is ascribed to the negligible access resistance owing to the presence of the top channel. Interface doping and channel doping were combined to obtain a complete heterojunction, which exhibited minimized contact resistance for a wide range of gate bias values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.