Abstract

This work reports on the properties of heterojunctions consisting of n-type Ga2O3 layers, deposited using ultrasonic spray pyrolysis at high temperature from water-based solution, combined with p-type NiO and Cu2O counterparts, deposited by radio frequency and reactive, direct-current magnetron sputtering, respectively. After a comprehensive investigation of the properties of the single layers, the fabricated junctions on indium tin oxide (ITO)-coated glass showed high rectification, with an open circuit voltage of 940 mV for Ga2O3/Cu2O and 220 mV for Ga2O3/NiO under simulated solar illumination. This demonstrates in praxis the favorable band alignment between the sprayed Ga2O3 and Cu2O, with small conduction band offset, and the large offsets anticipated for both energy bands in the case of Ga2O3/NiO. Large differences in the ideality factors between the two types of heterojunctions were observed, suggestive of distinctive properties of the heterointerface. Further, it is shown that the interface between the high-temperature-deposited Ga2O3 and the ITO contact does not impede electron transport, opening new possibilities for the design of solar cell and optoelectronic device architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.