Abstract

AbstractPlatinum (Pt) is the most effective bench‐marked catalyst for producing renewable and clean hydrogen energy by electrochemical water splitting. There is demand for high HER catalytic activity to achieve efficient utilization and minimize the loading of Pt in catalysts. In this work, we significantly boost the HER mass activity of Pt nanoparticles in Ptx/Co to 8.3 times higher than that of commercial Pt/C by using Co/NC heterojunctions as a heterogeneous version of electron donors. The highly coupled interfaces between Co/NC and Pt metal enrich the electron density of Pt nanoparticles to facilitate the adsorption of H+, the dissociation of Pt−H bonds and H2 release, giving the lowest HER overpotential of 6.9 mV vs. RHE at 10 mA cm−2 in acid among reported HER electrocatalysts. Given the easy scale‐up synthesis due to the stabilization of ultrafine Pt nanoparticles by Co/NC solid ligands, Ptx/Co can even be a promising substitute for commercial Pt/C for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.