Abstract

Application of ZnO in the field of photoelectrochemical water splitting is limited because of its wide-band-gap and high recombination rate. Herein is reported the design of an efficient ZnO photoanode deposited with CoOx nanoparticles to achieve a heterojunction and oxygen vacancies. The CoOx nanoparticles with abundant oxygen vacancies were anchored onto the nanorod arrays by spin coating and calcination followed by a solvothermal treatment. CoOx nanoparticles serve the dual function of forming a p-n heterojunction to facilitate the separation of photogenerated carriers, and act as a cocatalyst to decrease water oxidation barrier. Finally, oxygen vacancies increase the number of active redox sites and act as hole traps, enabling their migration to the electrode/electrolyte interface. The composite photoanode exhibits a high incident photon-to-current conversion efficiency (76.7 % at 350 nm), which is twice that of pristine ZnO, and a photoconversion efficiency of 0.68 % (0.73 V versus RHE). The current approach can be expanded to fabricate other efficient photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.