Abstract
Highly active and earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are of great significance for sustainable hydrogen generation through alkaline water electrolysis. Here, with an aim to enhance the bifunctional electrocatalytic activity of cobalt molybdate towards overall water splitting, we demonstrate a simple method involving the modulation of the cobalt to molybdenum ratio and creation of phase-modulated heterointerfaces. Samples with varying Co/Mo molar ratios are obtained via a microwave-assisted synthesis method using appropriate starting precursors. The synthesis conditions are modified to create a heterointerface involving multiple phases of cobalt molybdenum suboxides (CoO/CoMoO3/Co2Mo3O8) supported on Ni foam (NF). Detailed electrochemical studies reveal that modulating the composition and hence the interface can tweak the bifunctional electrocatalytic activity of the material for HER and OER and thus improve the overall water splitting efficiency with very high durability over 500 h. To further evaluate the practical applicability of the studied catalyst in water splitting, an alkaline electrolyser is fabricated with the optimized cobalt molybdenum suboxide material (CMO-1.25) as a bifunctional electrocatalyst. A current density of 220 mA cm-2 @1.6 V and 670 mA cm-2 @1.8 V was obtained, and the device showed very good long-term durability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.