Abstract
Mott physics is characterized by an interaction-driven metal-to-insulator transition in a partially filled band. In the resulting insulating state, antiferromagnetic orders of the local moments typically develop, but in rare situations no long-range magnetic order appears, even at zero temperature, rendering the system a quantum spin liquid. A fundamental and technologically critical question is whether one can tune the underlying energetic landscape to control both metal-to-insulator and Néel transitions, and even stabilize latent metastable phases, ideally on a platform suitable for applications. Here we demonstrate how to achieve this in ultrathin films of NdNiO3 with various degrees of lattice mismatch, and report on the quantum critical behaviours not reported in the bulk by transport measurements and resonant X-ray spectroscopy/scattering. In particular, on the decay of the antiferromagnetic Mott insulating state into a non-Fermi liquid, we find evidence of a quantum metal-to-insulator transition that spans a non-magnetic insulating phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.