Abstract

An investigation of the laser radiation effects on the nonlinear optical rectification in an AlGaAs inverse parabolic quantum well with asymmetrical barriers is performed within the effective mass approximation, taking into account the dielectric mismatch between the semiconductor and the surrounding medium. Using the accurate dressing effect for the confinement potential and electrostatic self-energy due to the image-charges, we prove that: (i) a spatially dependent effective mass in the laser-dressing parameter definition is required for precise calculations of the energy levels; (ii) the dielectric confinement provides a potential mechanism for controlling electronic states and optical properties of quantum wells. In addition, the laser dependence of the energy where the optical rectification reaches its maximum can be adjusted by external electric fields. The joint action of the intense high-frequency laser and static electric fields may provide tuning of the nonlinear properties in this type of dielectrically modulated heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.