Abstract

A nanoscale kinetic Monte Carlo (kMC) model is developed to study the deformation behavior of metallic glasses (MGs). The shear transformation zone (STZ) is adopted as our fundamental deformation unit and each nanoscale volume element (∼1nm voxel) in the MG is considered as a potential STZ that may undergo inelastic rearrangements sampled from a randomized catalog that varies from element to element, with stress-dependent activation energies. The inelastic transformation sampled out of spatially randomized catalogs (a key characteristic of glass) is then treated as an Eshelby’s inclusion and the induced elastic field is solved in the Fourier space using the spectral method. The distinct features of our model, compared to previous work, are the introduction of randomized event catalogs for different nanoscale volume elements, repeated operations within the same element, and a “generation-dependent” softening term to reflect the internal structural change after each deformation. Simulations of uniaxial tension show the important effect of softening on the formation of shear bands, with a size-independent thickness of 18nm. Statistical analysis of the accumulated strain at the ∼1nm voxel level is carried out and sample size effect on the extreme value statistics is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.