Abstract

Mid-infrared absorption spectroscopy plays an important role in molecule identification and quantification for widespread applications. Integrated photonics provides opportunities to perform spectroscopic sensing on-chip for the minimization of device size, cost, and power consumption. The integration of waveguides and photodetectors is an indispensable step toward the realization of these on-chip sensing systems. It is desired to extend the operating wavelengths of these on-chip sensing systems to the long-wave infrared (LWIR) range to utilize more molecular absorption fingerprints. However, the development of LWIR waveguide-integrated photodetectors faces challenges from both waveguide platforms due to the bottom cladding material absorption and photodetection technologies due to the low LWIR photon energy. Here, we demonstrate LWIR waveguide-integrated photodetectors through heterogeneous integration of graphene photodetectors and Si waveguides on CaF2 substrates. A high-yield transfer printing method is developed for flexibly integrating the waveguide and substrate materials to solve the bottom cladding material absorption issue. The fabricated Si-on-CaF2 waveguides show low losses in the broad LWIR wavelength range of 6.3-7.1 μm. The graphene photodetector achieves a broadband responsivity of ∼8 mA/W in these low-photon-energy LWIR wavelengths under zero-bias operation with the help of waveguide integration and plasmonic enhancement. We further integrate the graphene photodetector with a Si-on-CaF2 folded waveguide and demonstrate on-chip absorption sensing using toluene as an example. These results reveal the potential of our technology for the realization of chip-scale, low-cost, and low-power-consumption LWIR spectroscopic sensing systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call