Abstract

Photocatalysis has been oft proposed as a green solution for pollution remediation, however, majority of the existing literature only studies the degradation of solitary analytes. The degradation of mixtures of organic contaminants is inherently more complicated due to a variety of photochemical processes that occur in parallel. Here, we describe a model system comprised of methylene blue and methyl orange dyes whose degradation carried out by two common photocatalysts, P25 TiO2 and g-C3N4. With P25 TiO2 as the catalyst, the degradation rate of methyl orange slowed by 50% when degraded in a mixture compared to when alone. Control experiments with radical scavengers showed this to occur due to competition between the dyes for oxidative photogenerated species. In the presence of g-C3N4, methyl orange's degradation rate in the mixture increased by 2300% due to two homogeneous photocatalysis processes sensitized by methylene blue. Homogenous photocatalysis was found to be fast relative to heterogeneous photocatalysis by g-C3N4 but slow relative to photocatalysis by P25 TiO2 and explains the change observed between the two catalysts. Changes in dye adsorption to the catalyst when in a mixture were also explored but not found to coincide with changes in degradation rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call