Abstract

Inward rectification was characterized in neonatal spiral ganglion neurons maintained in tissue culture. Whole cell current and voltage-clamp techniques were used to show that the hyperpolarization-activated cationic (Ih) current underlies most or all of the inward rectification demonstrated in these neurons. The average reversal potential (-41.3 mV) and cesium sensitivity were typical of that found in other neurons and cell types. What was unique about the hyperpolarization-activated currents, however, was that the half-maximal voltages (V1/2) and slope factors (k) that characterized Ih current activation were graded from neuron to neuron. Voltage-clamp recordings made with standard bath and pipette solutions revealed V1/2 values that ranged from -78.1 to -122.1 mV, with slope factors from 7.6 to 13.1. These gradations in the voltage-dependent features of the Ih current did not result from variability in the recording conditions because independently measured Na+ current-to-voltage relationships were found to be uniform (peak current at -20 mV). Moreover, the range and average V1/2 and slope values could be altered with activators [8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate in combination with okadaic acid] or inhibitors {N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide}of protein indicating that Ih current heterogeneity most likely resulted from differential phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.