Abstract

In outlier detection, recent major research has shifted from developing univariate methods to multivariate methods due to the rapid growth of multidimensional data. However, one typical issue of this paradigm shift is that many multidimensional data often mainly contains univariate outliers , in which many features are actually irrelevant. In such cases, multivariate methods are ineffective in identifying such outliers due to the potential biases and the curse of dimensionality brought by irrelevant features. Those univariate outliers might be well detected by applying univariate outlier detectors in individually relevant features. However, it is very challenging to choose a right univariate detector for each individual feature since different features may take very different probability distributions. To address this challenge, we introduce a novel Heterogeneous Univariate Outlier Ensembles (HUOE) framework and its instance ZDD to synthesize a set of heterogeneous univariate outlier detectors as base learners to build heterogeneous ensembles that are optimized for each individual feature. Extensive results on 19 real-world datasets and a collection of synthetic datasets show that ZDD obtains 5%–14% average AUC improvement over four state-of-the-art multivariate ensembles and performs substantially more robustly w.r.t. irrelevant features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.