Abstract

Heterogeneous ultradense networks (H-UDNs) are one key enabler for fifth-generation (5G) wireless networks and beyond to satisfy the explosive growth of mobile data traffic, which exploits spatial reuse of scarce spectrum by deploying massive base stations (BSs) to boost network capacity and enhance network coverage. In this article, we present the system architecture for 5G H-UDNs, consisting of virtualized integrated ground-air-space radio access networks (RANs) and core networks and study network coordination for virtualized H-UDN to efficiently manage computing resources and intercell interference. We look at a cloud-fog-computing coordination framework for efficient computing resource management by achieving reasonable computing task distribution and transfer; computing load balance for computing tasks among virtual computing resources to improve network performance and computing resource efficiency; and a macro-small cell coordination framework for virtualized H-UDN with nonorthogonal multiple access (NOMA) to efficiently manage intercell interference and improve network performance. The joint macro-small enhanced intercell interference coordination (eICIC) and small-small coordinated multipoint joint transmission (CoMP-JT) scheme can efficiently eliminate macro-small intercell interference and utilize small-small intercell interference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.