Abstract

Estimates of causal effects are needed to answer what-if questions about shifts in policy, such as new treatments in pharmacology or new pricing strategies for business owners. A new non-parametric approach is proposed to estimate the heterogeneous treatment effect based on random forests (HTERF). The potential outcome framework with unconfoundedness shows that the HTERF is pointwise almost surely consistent with the true treatment effect. Interpretability results are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.