Abstract
Articular cartilage provides critical load-bearing and tribological properties to the normal function of diarthrodial joints. The unique properties of cartilage, as well as heterogeneous deformations during mechanical compression, are due to the nonuniform microstructural organization of tissue components such as collagens and proteoglycans. A new cartilage deformation by tag registration (CDTR) technique has been developed by the authors to determine heterogeneous deformations in articular cartilage explants. The technique uses a combination of specialized MRI methods, a custom cyclic loading apparatus, and image processing software. The objective of this study was to use the CDTR technique to document strain patterns throughout the volume of normal bovine articular cartilage explants during cyclic unconfined compression at two physiologically-relevant applied normal stress levels (1.29 and 2.57 MPa). Despite simple uniaxial cyclic compressive loading with a flat, nonporous indenter, strain patterns were heterogeneous. Strains in the thickness direction (E(yy)) were compressive, varied nonlinearly with depth from the articular surface from a maximum magnitude of 11% at the articular surface, and were comparable despite a 2-fold increase in applied normal stress. Strains perpendicular to the thickness direction (E(xx) and E(zz)) were tensile, decreased linearly with depth from the articular surface from a maximum of 7%, and increased in magnitude 2.5-fold with a 2-fold increase in applied normal stress. Shear strains in the transverse plane (E(xz)) were approximately zero while shear strains in the other two planes were much larger and increased in magnitude with depth from the articular surface, reaching maximum magnitudes of 2% at the articular cartilage-subchondral bone interface. In general, strain patterns indicated that cartilage osteochondral explants exhibited depth-dependent nonisotropic behavior during uniaxial cyclic loading. These results are useful in verifying constitutive formulations of articular cartilage during cyclic unconfined compression and in characterizing the micromechanical environment likely experienced by individual chondrocytes throughout the tissue volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.